#### SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS), PUTTUR



(Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu) (Accredited by NAAC with "A+" Grade & ISO 9001: 2008 Certified Institution)

#### **QUESTION BANK (DESCRIPTIVE)**

Subject with Code: Digital Logic and Computer Organization (23CS0506)Course & Branch: B.Tech –CSE, CCC, CIC & CSITYear & Semester: II - B.Tech. & I-SemesterR

**Regulation:** R23

#### UNIT I PART-A (2 MARKS)

| 1. | <b>(a)</b>   | What is binary number system?                     | [L1][CO1] | [2M] |
|----|--------------|---------------------------------------------------|-----------|------|
|    | <b>(b)</b>   | What is an Excess3 code?                          | [L1][CO1] | [2M] |
|    | (c)          | What are the basic properties of Boolean algebra? | [L1][CO1] | [2M] |
|    | ( <b>d</b> ) | List out the names of basic logical operators.    | [L1][CO1] | [2M] |
|    | (e)          | List the names of universal gates with symbols    | [L1][CO1] | [2M] |

|    |            | PART-B (10 MARKS)                                                                                                                   |            |               |
|----|------------|-------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| 2. | a)         | Differentiate between floating point representation and fixed-point                                                                 | [L2][CO1]  | [5M]          |
|    |            | representation.                                                                                                                     |            |               |
|    | <b>b</b> ) | What is number system? explain the different types of number systems                                                                | [L1][CO1]  | [5M]          |
| 3  | a)         | Convert the (555) <sub>10</sub> into binary, octal and Hexadecimal number systems.                                                  | [L2][CO1]  | [5M]          |
|    | b)         | Convert the following into binary to decimal                                                                                        | [L2][CO1]  | [5M]          |
|    |            | i) (1101.1) <sub>2</sub> ii) (1100.001) <sub>2</sub>                                                                                |            |               |
| 4  | a)         | Convert the following into decimal into hexa decimal                                                                                | [L2][CO1]  | [5M]          |
|    |            | i) (5386.34) 10 ii) (214.35)10                                                                                                      |            |               |
|    | b)         | Represent signed numbers from +7 to -8 using different ways of                                                                      | [L2][CO1]  | [5M]          |
|    |            | representation.                                                                                                                     |            |               |
| 5  |            | Explain the Binary codes with examples.                                                                                             | [L2][CO1]  | [10M]         |
| 6  | a)         | List the Basic Logic functions.                                                                                                     | [L1][CO1]  | [ <b>3</b> M] |
|    | <b>b</b> ) | Explain about Basic Logic gates with symbols and truth table.                                                                       | [L2][CO1]  | [7M]          |
| 7  | a)         | Explain about Universal Logic gates with symbols and truth table.                                                                   | [L2][CO1]  | [5M]          |
|    | b)         | Prove the following identities:                                                                                                     |            |               |
|    |            | A' B' C' + A' B C' + A B' C' + A B C' = C'                                                                                          | [L3][CO1]  | [5M]          |
|    |            | A B + A B C + A' B + A B' C = B + A C                                                                                               |            |               |
| 8  | a)         | Simplify the following Boolean Expressions:                                                                                         |            |               |
|    |            | A'C'+ABC+AC'+AB to three literals.                                                                                                  | [L4][CO1]  | [5M]          |
|    |            | A'B(D'+C'D)+B(A+A'CD) to one literal.                                                                                               |            |               |
|    | b)         | Simplify the given Boolean expression using K-map                                                                                   | [L4][CO1]  | [5M]          |
|    |            | $F(A,B,C,D) = \sum m(0,2,3,8,10,11,12,14)$                                                                                          |            |               |
| 9  | a)         | Simplify the following Boolean expressions using K-map                                                                              | [L4][CO1]  | [5M]          |
|    |            | i) $F(x, y, z) = \sum m(2, 3, 4, 5)$ ii) $F(x, y, z) = \sum m(3, 4, 6, 7)$ .                                                        |            | Louri         |
|    | b)         | Define combinational circuit and explain the procedure for designing a                                                              | [L1][CO1]  | [ <b>5</b> M] |
| 10 |            | combinational circuit.                                                                                                              | [][ • • •] | r1            |
| 10 | a)         | Explain about Binary Half Adder with truth table and logic diagram.                                                                 | [L2][CO1]  | [5M]          |
|    | b)         | Design and draw a full adder circuit.                                                                                               | [L6][CO1]  | [5M]          |
| 11 | a)         | Define Decoder and explain in detail about a 2-to-4-line binary decoder.                                                            | [L1][CO1]  | [5M]          |
|    | b)         | Design and implement the following Boolean function by 8:1 Multiplexer.<br>(A, B, G, D), $\Sigma_{-}$ (0, 1, 2, 5, 7, 0, 0, 14, 15) | [L6][CO1]  | [5M]          |
|    |            | $(A,B,C.D) = \Sigma m(0,1,2,5,7,8,9,14,15).$                                                                                        |            |               |

# UNIT II

# PART-A (2 MARKS)

| 1. | <b>(a)</b>   | Define a sequential circuit and draw its block diagram. | [L1][CO1] | [2M] |
|----|--------------|---------------------------------------------------------|-----------|------|
|    | <b>(b)</b>   | What is Flipflop and different types of Flipflop?       | [L1][CO1] | [2M] |
|    | (c)          | List the types of Buses.                                | [L1][CO2] | [2M] |
|    | ( <b>d</b> ) | Sketch the basic functional units of computer.          | [L3][CO2] | [2M] |
|    | (e)          | List the Classification of Computer Generations.        | L1][CO2]  | [2M] |

| 2. | a) | Differentiate between Combinational & Sequential circuits.                   | [L4][CO1] | [5M]  |
|----|----|------------------------------------------------------------------------------|-----------|-------|
|    | b) | Distinguish between latches and flipflops.                                   | [L4][CO1] | [5M]  |
| 3  | a) | Explain the working principle of SR and JK flip-flops                        | [L2][CO1] | [5M]  |
|    | b) | Explain the working principle of T and D flip-flops.                         | [L2][CO1] | [5M]  |
| 4  | a) | What is a counter? List the applications of counters.                        | [L1][CO1] | [5M]  |
|    | b) | Explain in detail about 3-bit ripple Up-counter using suitable diagram.      | [L2][CO1] | [5M]  |
| 5  |    | Define a Register. Explain in detail about various Shift Registers.          | [L1][CO1] | [10M] |
| 6  | a) | List the different types of a computer.                                      | [L1][CO2] | [5M]  |
|    | b) | Explain the functional units in the computer.                                | [L2][CO2] | [5M]  |
| 7  | a) | Differentiate between I/O unit and memory unit.                              | [L4][CO2] | [5M]  |
|    | b) | Differentiate between control unit and ALU.                                  | [L4][CO5] | [5M]  |
| 8  |    | Describe the Basic Operational Concepts of computer with neat diagram.       | [L2][CO3] | [10M] |
| 9  | a) | Give the Structure of BUS Interface with various devices in computer.        | [L2][CO6] | [5M]  |
|    | b) | Explain briefly about the software of a computer.                            | [L2][CO6] | [5M]  |
| 10 | a) | Explain briefly about the performance of a computer.                         | [L2][CO2] | [5M]  |
|    | b) | Explain briefly about the multiprocessors and multi computers of a computer. | [L2][CO2] | [5M]  |
| 11 | a) | List the different types of computer generations.                            | [L1][CO2] | [5M]  |
|    | b) | Explain briefly about the Von- Neumann Architecture of a computer.           | [L2][CO3] | [5M]  |

### UNIT III

## PART-A (2 MARKS)

| 1. | (a)          | Represent -7 in signed magnitude, 1s complement and 2s complement | [L2][CO1] | [2M] |
|----|--------------|-------------------------------------------------------------------|-----------|------|
|    | (b)          | What is the advantage of using Booth algorithm?                   | [L5][CO1] | [2M] |
|    | (c)          | What is floating point numbers?                                   | [L2][CO1] | [2M] |
|    | ( <b>d</b> ) | What are the basic operations to execute a complete instruction?  | [L1][CO3] | [2M] |
|    | (e)          | What is the need of multiple organization?                        | [L2][CO3] | [2M] |

| 2.  | a) | Explain the Flow chart for Addition and Subtraction.                                                                                                 | [L2][CO3] | [5M]  |
|-----|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|
|     | b) | Subtract 1101 and -1001 using 2's complement subtractions.                                                                                           | [L5][CO1] | [5M]  |
| 3   | a) | Explain the working of a Ripple carry adder.                                                                                                         | [L2][CO1] | [5M]  |
|     | b) | Illustrate the steps in Booth multiplication flow chart. Show the step by step signed multiplication of (-7) and (-11) using Booth algorithm         | [L3][CO1] | [5M]  |
| 4   |    | Develop flowchart for the Multiplication of floating-point number and illustrate with an example.                                                    | [L6][CO1] | [10M] |
| 5   |    | Develop and discuss the Flow chart for Division of numbers Give the step-<br>by-step procedure to Divide 01101010100 with 10001 and find the results | [L6][CO1] | [10M] |
| 6   |    | Develop flow chart for the addition/subtraction of floating-point number and illustrate with an example.                                             | [L6][CO1] | [10M] |
| 7.  |    | Explain the fundamental concept in processor organization?                                                                                           | [L3][CO3] | [10M] |
| 8.  |    | Describe the execution of a complete instruction?                                                                                                    | [L2][CO3] | [10M] |
| 9.  | a) | Explain the multiple bus organization.                                                                                                               | [L3][CO3] | [6M]  |
|     | b) | Differentiate between Hardwired Control and Micro-programmed control.                                                                                | [L2][CO4] | [4M]  |
| 10. |    | What is Hardwired Control? Explain in detail with a neat diagram.                                                                                    | [L3][CO4] | [10M] |
| 11. |    | What is micro programed Control? Explain in detail with a neat diagram.                                                                              | [L3][CO4] | [10M] |

## UNIT IV

#### PART-A (2 MARKS)

| 1. | (a)          | What is the need of memory?                | [L2][CO5] | [2M] |
|----|--------------|--------------------------------------------|-----------|------|
|    | (b)          | Define main memory and auxiliary memory    | [L5][CO5] | [2M] |
|    | (c)          | Classify main memory and secondary memory? | [L2][CO5] | [2M] |
|    | ( <b>d</b> ) | What is cache memory?                      | [L1][CO5] | [2M] |
|    | (e)          | Define virtual memory?                     | [L2][CO5] | [2M] |

| 2.  |    | Explain different types of ROM memories in detail?                    | [L2][CO5] | [10M] |
|-----|----|-----------------------------------------------------------------------|-----------|-------|
| 3.  |    | Categorize the semiconductor RAM in detail.                           | [L4][CO5] | [10M] |
| 4.  | a) | Describe about memory hierarchy concept in detail?                    | [L1][CO5] | [5M]  |
|     | b) | Discuss the speed, size and cost of a memory?                         | [L2][CO5] | [5M]  |
| 5.  | a) | Explain 128*8 RAM with block diagram and function table.              | [L3][CO5] | [6M]  |
|     | b) | Distinguish between SRAM & DRAM?                                      | [L2][CO5] | [4M]  |
| 6.  |    | Explain how memories connected with CPU with diagram.                 | [L3][CO5] | [10M] |
| 7.  | a) | What is cache memory? What is hit and miss in the cache memory.       | [L2][CO5] | [5M]  |
|     | b) | List and explain different mapping in Cache memory                    | [L2][CO5] | [4M]  |
| 8.  | a) | Compare the various cache mapping techniques.                         | [L2][CO5] | [5M]  |
|     | b) | What are the performance considerations in cache memory?              | [L2][CO5] | [5M]  |
| 9.  | a) | What is Virtual Memory? Discuss how address mapping using pages.      | [L2][CO5] | [5M]  |
|     | b) | Compare Cache and virtual memory?                                     | [L2][CO5] | [5M]  |
| 10. | a) | Describe in detail about the memory management requirements.          | [L1][CO5] | [5M]  |
|     | b) | Compare various types of secondary storage systems.                   | [L2][CO5] | [5M]  |
| 11. | a) | Describe the secondary storage and explain with a neat block diagram. | [L1][CO5] | [5M]  |
|     | b) | Compare Cache and Auxiliary memories?                                 | [L2][CO5] | [5M]  |

# UNIT V PART-A (2 MARKS)

| 1. | (a)          | Define debugging?                                         | [L1][CO6] | [2M] |
|----|--------------|-----------------------------------------------------------|-----------|------|
|    | <b>(b)</b>   | What is interrupt and classify?                           | [L1][CO6] | [2M] |
|    | (c)          | Classify interface circuits?                              | [L1][CO6] | [2M] |
|    | ( <b>d</b> ) | What are the examples of processor?                       | [L1][CO6] | [2M] |
|    | (e)          | What is the need of buses and classify the bus structure? | [L1][CO6] | [2M] |

# PART-B (10 MARKS)

| 2.  |            | Explain how to access input and output devices in detail?                | [L3][CO6] | [10M] |
|-----|------------|--------------------------------------------------------------------------|-----------|-------|
| 3.  |            | Explain the interrupts in input/output organization?                     | [L3][CO6] | [10M] |
| 4.  | a)         | Explain the interrupt Nesting?                                           | [L3][CO6] | [5M]  |
|     | b)         | Explain about interrupt service routine (ISR)?                           | [L3][CO6] | [5M]  |
| 5.  |            | Give detailed notes on DMA transfers with neat sketch.                   | [L2][CO6] | [10M] |
| 6.  | a)         | Distinguish between Centralized arbitration and Distributed arbitration? | [L2][CO6] | [5M]  |
|     | <b>b</b> ) | What is the need of BUS and explain different types in detail?           | [L1][CO6] | [5M]  |
| 7.  |            | Types of interfacing circuits and explain it?                            | [L2][CO6] | [10M] |
| 8.  |            | Explain the standard I/O devices?                                        | [L3][CO6] | [10M] |
| 9.  |            | Draw the USB architecture and explain it?                                | [L1][CO6] | [10M] |
| 10. | a)         | Draw the PCI bus architecture and explain its operation?                 | [L1][CO6] | [5M]  |
|     | b)         | Explain about SCSI BUS in detail?                                        | [L3][C06] | [5M]  |
| 11. | a)         | Compare data, address and control buses?                                 | [L2][CO6] | [5M]  |
|     | b)         | Explain about input and output interface circuits?                       | [L3][CO6] | [5M]  |

Prepared By: Mrs.P.Alekya, Ms.S.Sunitha, Ms.A.Roja, Mr.K.SravanKumar, Mr.A.Mahesh Reddy